Reiknirit, rokfraedi og reiknanleiki

Magni og Anna

skil 11






1 Exercise 8.1 bls 302

Show that for any function f: N — N, where f(n) > n, the space complexity class
SPACE(f(n)) is the same whether you define the class by using the single-tape TM
model or the two tape read-only input TM model.

The two-tape read-only TM model is used to allow sublinear space complexity
classes to be defined. Since the input is read-only, there is no need to count the
reading of the input as access to storage cells. However, when f(n) > n, the amount
of space used for the input is obviously linear in terms of the input size, and hence
the number of storage cells that must be scanned in order to read the input is linear
as well. So, when f(n) > n, the cost of scanning across the input does not change
the space complexity. And it is possible for the single-tape TM to operate in ex-
actly the manner as the two-tape read-only input TM model by scanning across its
input and using the cell in the n+1 position as the start of the storage tape, while
using the first n cells as its read only input. Since this only adds a linear number
of storage cells above what the 2-tape model would have used, and since f(n) > n,
the same space complexity class SPACE(f(n)) would be represented.

2 Exercise 8.4 bls 302

Show that PSPACE is closed under the operations union, complementation, and
star.

A,B € PSPACE
L(M;y)=A, L(M3)=B
M, og My eru P-SPACE

Find M3 L(M3) = A UB
ef vid keyrum peer hvor eftir annari pa fdum vid f1(n) + f2(n) sem er P-SPACE
ef vid keyrum peer samhlida pa fdum vid 2 « Maz(f1(n), f2(n)) sem er P-SPACE

star:

Finna M3 L(M3) = A*

Vio skiptum ordinu i btita og steersti buturinn verdu ekki steerri en upprunalega
ordid. Pannig vid purfum ekki meira minni en lengdin & ordinu + sméa constant
sem er P-SPACE

complementation:
Tekur jafn mikid pléss
f(n) = f(n)



3 Exercise 8.6 bls 302
Show that any PSPACE-hard language is also NP-hard

Given any PSPACE-hard language L we know by definition that every language
L’ in PSPACE is polynonial time reducible to L. Since we know that NP C PSACE,
this means that every language Ly p in NP is in PSPACE and therefore polynomial
time reducible to L. By definition of NP-hard, since every language Ly p in NP is
plynomial time reducible to L, L is NP-hard.

3 Exercise 8.9 bls 303
Show that, if every NP-hard language is also PSPACE-hard, then PSPACE = NP

P < NP < P-SPACE
NP < P-SPACE

Given every NP-Hard language is also PSPACE-Hard want to show that NP =
PSPACE. From our assumption we know that if every NP-Hard is also PSPACE-
Hard we know that then every NP-Complete language is also PSPACE-Hard since
NP-Hard contains all of the NP-complete problems by definition. So we also know
that SAT is PSPACE-Hard. And from the assumption that for any A in PSPACE, A
reduces to SAT. Claim then we can solve A in NP. Create a TM, N as follows.

on input x, do
Compute f(x), the poly-time reduction between A and SAT.
Decide whether f(x) is satisfiable, if so, accept, otherwise reject.

Claim N decides A since x is in A iff f(x) is in SAT. Also notice that N is an NP
machine since computing SAT is in NP.

4 Exercise 8.13 bls 303

Show that TQBF restricted to formulas where the part following the quantifiers is
in conjunctive normal form is still PSPACE-complete.

TQBF € PSPACE sammkvaemt 8.8 bls 284
(Vi) = (=) V ()

—(-p)=p

(@A) Vz=(dVa)A(PpVz)



5 Exercise 7.26 bls 274

We can place each card in the box in two possible orientations, the normal or the
reverse orientation. We don’t care about the relative positions of the cards in the
box, that is we don’t care if card A is on top of card B or the opposite, since in both
cases the holes are covered in the same way.

First, we show that PUZZLE is in NP. We construct a nondeterministc polynomial
time Turing machine M that decides PUZZLE as follows. Machine M on input
(c1, ..., cx) chooses nondeterministically an orientation for each of the cards ¢; and
places the cards in the box. Then it checks to see if all the holes are covered, and if
they are covered it accepts, othewise it rejects. The running time of machine M is
polynomial in the number of holes and the number of cards.

Second, we show that every language in NP is polynomial time reducible to PUZ-
ZLE. To do that, we show that 35AT is polynomial time reducible to PUZZLE. That
is, for each 3cnf-formula ¢, we show how to construct, in polynomial time, specific
cards for the PUZZLE problem, such that the PUZZLE has a solution iff ¢ is satis-
fiable.

We construct the cards from the 3cnf-formula ¢ in the following way.

For each variable z; of ¢ we create a new card c;.

In each card, we divide the two columns in row, such that each row corresponds
to a clause of ¢. (The number of rows is equal to the number of clauses of ¢.)

Id card ¢;, if literal z; appears in clause j then we don’t punch a hole in the left
position of row j. Otherwise, if x; doesn’t appear in clause j then we punch a hole
in the left position of j.

In card ¢;, if literal —z; appears in clause j then we don’t punch a hole in the right
position of row j. Otherwise, if —z; doesn’t appear in clause j then we punch a
hole in the right position of row j.

We also create a special card that has holes in all its left column, and no holes in its
right column.

To show that this construction works, we argue that if ¢ is satisfiable then the PUZ-
ZLE has a solution, and conversely, if PUZZLE has a solution then ¢ is satisfiable.

Suppose that ¢ is satisfiable. Then we can solve the PUZZLE as follows. Since
¢ is satisfiable, there exists an assignment to its variables that satisfies ¢. For each
variable x; of ¢, if x; is 1, in the satisfyng assignment, we put the corresponding
card ¢;, in the box in its normal orientation, otherwise, if x; is 0, we put the card in
its reverse orientation. We also put the special card in its normal orientation. This
placement of the cards covers completely the bottom of the box. Assume, for con-
tadiction that this is not true, and therefore there exists a row j, that corresponds
to clause j, through which you can view the left bottom of the box. For each card
ci, with normal orientation, we have that its corresponding variable z; has a hole
in the left position of row j, which means that the variable appears either as —z;
or not at all in clause j. Since ¢; has normal orientation, we have that —x; = 0 and
therefore variable z; does not satisfy clause j. Thus the variables of the normal
oriented cards do not satisfy clause j. Using a similar reasoning we have that the
variables of the cards with the reverse orientation do not satisfy the clause j either.
Thus the initial assignment of the variables does not satisfy the formula, which is
a contradiction, since we have that the assignment is satisfying.

Suppose now that the PUZZLE has a solution. Then we show that ¢ is sat-
isfiable, by constructing a satisfying assignment as follows. The special card, ac-
cording to its orientation, does not cover one of the two columns. If it does not
cover the left column, then for each row j there exists at least one card ¢ that has
its left position of row j with no hole. If the card c; has normal orientation then



we assign the value 1 to its variable ¢, otherwise if the orientation is reverse we
assign the value 0. We repeat the same procedure for all the rows. If by the above
procedure some of the variables have not been assigned values, we assign to them
an arbitrary value 0 or 1. The procedure is similar when the special card has re-
verse orientation. This assignment is a satisfying one, since for each clause j (that
corresponds to row j) there exists at least one variable whose literal z; or —z; in
the clause j has value 1. If the literal is x; then its card ¢; has normal orientation,
otherwise if the literal is —z; then the its card c; has reverse orientation, when the
special card has normal orientation.

The above reduction takes polynomial time in the number of clauses and variables
of a 3cnf- formula ¢. This completes the proof.

6 Exercise 8.14 bls 303



