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1 Exercise 5.15 bls 165
Prove that the following three set are not recursive by explicit reduction from the
set K - do not use Rice’s theorem.

1) {x|φx is a constant function}
reik frá K til T
T = {x|φx is a constant function}

Θ(x, y) = 1 + Zero(U(x, x))

= ϕi(x, y) = ϕs(i,x)(y) = ϕss(i)(x)(y) =

{

1 x ∈ k
⊥ x /∈ k

ss(i)(x) ∈ T <=> x ∈ K
Hef sýnt fram á að ss(i)(x) sér red frá K til T.

2) {x|φx is not the totally undefined function}
reik frá K til T
T = {x|φx is not the totally undefined function}

Θ(x, y) = 1 + Zero(U(x, x))

= ϕi(x, y) = ϕs(i,x)(y) = ϕss(i)(x)(y) =

{

1 x ∈ k
⊥ x /∈ k

ss(i)(x) ∈ T <=> x ∈ K
Hef sýnt fram á að ss(i)(x) sér red frá K til T.

3) {x|there is y with φx(y) ↓ and such that φy is total}
Fyrst undir dæmi er R.E. T = {x|φx is total}. Þá er allt dæmið það líka

reik frá K til T
T = {x|φx is total}

Θ(x, y) = 1 + Zero(U(x, x))

= ϕi(x, y) = ϕs(i,x)(y) = ϕss(i)(x)(y) =

{

1 x ∈ k
⊥ x /∈ k

ss(i)(x) ∈ T <=> x ∈ K
Hef sýnt fram á að ss(i)(x) sér red frá K til T.

2 Exercise 5.16 bls 165
For each of the following set and its complement, classify them as recursive, non-
recursive but r.e, or non-r.e. You may use Rice’s theorem to prove that a set is
not recursive. To prove that a set is r.e., show that it is range or domain of partial
recursive function. For the rest, use closure results or reductions.

2) {x|φx is injective}
By Rice’s theorem, this set is not recursive: the property is a property of func-
tions, not a property of programs, and is non-trival (there are both injective and
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non-injective functions). It follows by closure that the complement is also non-
recursive. We need to be a bit more specific about injectivity before we decide
whetehr or not the set or its complement is r.e., the defintion of injectivity nor-
mally given is ∀x, y, (x 6= y) =⇒ (f(x) 6= f(y)), which does not carry over well
to non-total functions. We can simply ignore all arguments on which the function
is not defined and state that φ is injective if, whenever φ(x) ↓ and φ(y) ↓ then
(x 6= y) =⇒ (φ(x) 6= φ(y)) or we can state that only total functions can be injective.
We look at both interpretations below.
Under the first interpretation (only defined values count), we claim that the com-
plement is r.e., so that the set itself cannot be r.e. To see that the complement is
r.e., note that placing some programs φi is this complement set can be done just by
indentifying two arguments x and y such that x 6= y and yet φi(x) = φi(y). We can
do this by quintuple dovetailing, on all programs, all pairs of arguments, and all
steps for each agrument; whenever we find a z such that

step(
∏5

1(z),
∏5

2(z),
∏5

3(z)) 6= 0 and
step(

∏5
1(z),

∏5
4(z),

∏5
5(z)) 6= 0 and

∏5
2(z) 6=

∏5
4(z) and

step(
∏5

1(z),
∏5

2(z),
∏5

3(z)) = step(
∏5

1(z),
∏5

4(z),
∏5

5(z)),

we print
∏5

1(z)

Under the secound iterpretation, however, neither the set nor its complement ir
r.e. Thus we must do some extra work. We reduce K̄ in turn to the set and to its
complement. To reduce K̄ to the set of (total) injective functions, we define.

Θ(x, y) =

{

y step(x, x, y) = 0
φj(y) otherwise

where φj is totally undefined function. This new functions is clearly partial recur-
sive (a valid defintion by cases), so we can write Θ(x, y) = φi(x, y) for some index i.
Using the s-m-n construction, we now get φs(i,x)(y) = Θ(xmy). But note that φs(i,x)

is the identity function whenever x ∈ K̄ and is undefined on at least one value of
y otherwise. Hence s(i, x) is injective whenever x ∈ K̄ is not injective (because
it is partial) otherwise. Thus we have reduced K̄ to our set of injective functions,
thereby showing that our set is not r.e. It remaining to show that the complement
of our set is not r.e. either; for that we need to reduce K̄ directly to the comple-
ments. We define a new function ζ(x, y) = y + Zero(φuniv(x, x)). Again, this is a
partial recursive function, so that there exists an index k such that φk(x,y) = ζ(x, y);
again, the s-m-n theorem tells us that we can write φs(k,x)(y) = φk(x, y) = ζ(x, y).
But note that φs(k,x)(y) is totally undefined when x ∈ K̄ and is the identity func-
tions otherwise; that is, s(k, x) is in the complement of our set whenever x ∈ K̄ so
that we have a reduction from K̄ to the complement of our set, thereby proving it
to be non-r.e.

6) The set of all r.e. sets that contain at least three elements.
Recall that an r.e. set is the range (or domain) of a partial recursive function. Thus
our set could equally we have been defined as the set of all partial recursive func-
tions that have at least three elements in their range (or domain). Sinve having a
range (or domain) of size at least three is and I/O property, this set is not recurisve
by Rice’s theorem. The set is r.e., however: intuitively, we can dovetail on all func-
tions, all arguments, and all numbers of steps, keeping track of what converged
and printing out a function index as soon as it has converged on at least three dis-
tinct arguments (for domain definitions, but range defintions are similar). Formal-
izing the notion is not hard (we basically want to run step(

∏3
1(z),

∏3
2(z),

∏3
3(z)),
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recording
∏3

1(z) and one of
∏3

2(z) (for domains) or step(
∏3

1(z),
∏3

2(z),
∏3

3(z)) (for
ranges) for which the function is nonzero, and printing

∏3
1(z) as soon as trhee dis-

tinct values of
∏3

2(z) (for domains) or of step(
∏3

1(z),
∏3

2(z),
∏3

3(z)) (for ranges) are
found that pair with the same (

∏3
1(z) value.

Since the set is non-recursive and r.e., its complement it not r.e. This is an r.e. set.
Informally, since we can enumerate all Turing machines and enumerate all pos-
sible input strings, we can start a triple dovetailing process, on all machines, all
inputs, and all steps. In the process, we every now and then discover a pair (ma-
chine, input) such that the machine accepts the string; we then "chalk one up" for
that machine. As soon as we have chalked up three for a machine, we print it (its
index). In that way, we correctly enumerate all machines that accept at least three
strings.

7) The set of all partial recursive functions with finite domain.
Neither this set nor its complement is r.e. That neither is recursive is an immediate
consequence of Rice’s theorem, since being defined on a finite of infinite number
of inputs is an I/O behavior. To show that neither S nor S̄ is r.e., we reduce K̄ to
each in turn.
To reduce K̄ to S, we define the function Θ(x, y) = φuniv(x, x); since this is a
valid partial recursive function, it has some index φi and we can write φs(x)(y) =
φi(x, y) = Θ(x, y). Now, if x ∈ K̄, then φs(x)(y) diverges for all y, and thus has
empty (and hence finite) domain, and thus s(x) belongs to S. On the other hand,
if x ∈ K, then φs(x)(y) = c, where c = φx(x) is a constant, so that φs(x) is total and
thus has infinite domain, and hence s(x) /∈ S, as desired.
To reduce K̄ to S̄, we define the function.

Θ(x, y) =

{

Zero(y) step(x, x, y) = 0
undefined otherwise

since this is a valid partial recursive function, is has some index φy and we can
write φs(x)(y) = φi(x, y) = Θ(x, y). Now if x ∈ K̄ then φs(x)(y) = Zero(y) and thus
is total and has infinite domain, and thus s(x) belongs to S̄. On the other hand, if
x ∈ K̄ then φs(x)(y), is undefined for all y ≥ y0 for some contstant y0, and thus has
finite domain and therefore s(x) does not belongs to S̄, as desired.
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